Search

GLUTATION y ANEURISMA CEREBRAL





Figura 1 La actividad antioxidante (GSH-Px) y el nivel (GSH y vitaminas A, E y C) en el plasma de personas sanas (n = 30) y pacientes con HSA (n = 30) en el 1º y 6º. día después de SAH; a p <0,05 en comparación con personas sanas. b p <0,05 en comparación con los pacientes del 1er día tras la HSA.



Figura 2 El nivel de productos de peroxidación lipídica (F2-isoprostanos, neuroprostanos, 4-HNE, 4-HHE, MDA y 4-ONE) en el plasma de personas sanas (n = 30) y pacientes con SAH (n = 30) en el 1er. y 6-8 días después de la HSA; a p <0,05 en comparación con personas sanas. b p <0,05 en comparación con los pacientes del 1er día tras la HSA.



Figura 3 Diagrama de flujo del estudio.


Referencias


1.Frosen J., Tulamo R., Paetau A., Laaksamo E., Korja M., Laakso A., Niemela M., Hernesniemi J. Saccular intracranial aneurysm: Pathology and mechanisms. Acta Neuropathol. 2012;123:773–786. doi: 10.1007/s00401-011-0939-3. - DOI - PubMed


2.Nieuwkamp D.J., Setz L.E., Algra A., Linn F.H., de Rooij N.K., Rinkel G.J. Changes in case fatality of aneurysmal subarachnoid hemorrhage over time, according to age, sex, and region: A meta-analysis. Lancet Neurol. 2009;8:635–642. doi: 10.1016/S1474-4422(09)70126-7. - DOI - PubMed



3.Huhtakangas J., Lehto H., Seppä K., Kivisaari R., Niemelä M., Hernesniemi J., Lehecka M. Long-term excess mortality after aneurysmal subarachnoid hemorrhage: Patients with multiple aneurysms at risk. Stroke. 2015;46:1813–1818. doi: 10.1161/STROKEAHA.115.009288. - DOI - PubMed


4.Yang Y., Chen S., Zhang J.M. The updated role of oxidative stress in subarachnoid hemorrhage. Curr. Drug Deliv. 2017;14:832–842. doi: 10.2174/1567201813666161025115531. - DOI - PubMed


5.Han Y., Su J., Liu X., Zhao Y., Wang C., Li X. Naringin alleviates early brain injury after experimental subarachnoid hemorrhage by reducing oxidative stress and inhibiting apoptosis. Brain Res. Bull. 2017;133:42–50. doi: 10.1016/j.brainresbull.2016.12.008. - DOI - PubMed


6.Nishihashi T., Trandafir C.C., Wang A., Ji X., Shimizu Y., Kurahashi K. Hypersensitivity to hydroxyl radicals in rat basilar artery after subarachnoid hemorrhage. J. Pharmacol. Sci. 2006;100:234–236. doi: 10.1254/jphs.SC0050160. - DOI - PubMed


7.Lin C.L., Hsu Y.T., Lin T.K., Morrow J.D., Hsu J.C., Hsu Y.H., Hsieh T.C., Tsay P.K., Yen H.C. Increased levels of F2-isoprostanes following aneurysmal subarachnoid hemorrhage in humans. Free Radic. Biol. Med. 2006;40:1466–1473. doi: 10.1016/j.freeradbiomed.2005.12.019. - DOI - PubMed


8.Reeder B.J. The redox activity of hemoglobins: From physiologic functions t pathologic mechanisms. Antioxid. Redox Signal. 2010;13:1087–1123. doi: 10.1089/ars.2009.2974. - DOI - PubMed


9.Ward R.J., Zucca F.A., Duyn J.H., Crichton R.R., Zecca L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 2014;13:1045–1060. doi: 10.1016/S1474-4422(14)70117-6. - DOI - PMC - PubMed


10.Konior A., Schramm A., Czesnikiewicz-Guzik M., Guzik T.J. NADPH oxidases in vascular pathology. Antioxid. Redox. Signal. 2014;20:2794–2814. doi: 10.1089/ars.2013.5607. - DOI - PMC - PubMed


11.Emeto T.I., Moxon J.V., Au M., Golledge J. Oxidative stress and abdominal aortic aneurysm: Potential treatment targets. Clin. Sci. (Lond.) 2016;130:301–315. doi: 10.1042/CS20150547. - DOI - PubMed


12.Murakami K., Koide M., Dumont T.M., Russell S.R., Tranmer B.I., Wellman G.C. Subarachnoid hemorrhage induces gliosis and increased expression of the pro-inflammatory cytokine high mobility group box 1 protein. Transl. Stroke Res. 2001;2:72–79. doi: 10.1007/s12975-010-0052-2. - DOI - PMC - PubMed


13.Salim S. Oxidative Stress and the Central Nervous System. J. Pharmacol. Exp. Ther. 2017;360:201–205. doi: 10.1124/jpet.116.237503. - DOI - PMC - PubMed


14.Mori T., Nagata K., Town T., Tan J., Matsui T., Asano T. Intracisternal increase of superoxide anion production in a canine subarachnoid hemorrhage model. Stroke. 2001;32:636–642. doi: 10.1161/01.STR.32.3.636. - DOI - PubMed


15.Erşahin M., Ozsavcı D., Sener A., Ozakpınar O.B., Toklu H.Z., Akakin D., Sener G., Yeğen B.Ç. Obestatin alleviates subarachnoid haemorrhage-induced oxidative injury in rats via its anti-apoptotic and antioxidant effects. Brain Inj. 2013;27:1181–1189. doi: 10.3109/02699052.2013.804199. - DOI - PubMed


16.Endo H., Nito C., Kamada H., Yu F., Chan P.H. Reduction in oxidative stress by superoxide dismutase overexpression attenuates acute brain injury after subarachnoid hemorrhage via activation of Akt/glycogen synthase kinase-3beta survival signaling. J. Cereb. Blood Flow Metab. 2007;27:975–982. doi: 10.1038/sj.jcbfm.9600399. - DOI - PMC - PubMed


17.Nurden A.T. Platelets, inflammation and tissue regeneration. Thromb. Haemost. 2011;105:13–33. doi: 10.1160/THS10-11-0720. - DOI - PubMed


18.Parrella E., Porrini V., Benarese M., Pizzi M. The role of mast cells in stroke. Cells. 2019;8:437 doi: 10.3390/cells8050437. - DOI - PMC - PubMed


19.Ocak U., Ocak P.E., Wang A., Zhang J.H., Boling W., Wu P., Mo J., Zhang T., Huang L. Targeting mast cell as a neuroprotective strategy. Brain Inj. 2019;33:723–733. doi: 10.1080/02699052.2018.1556807. - DOI - PubMed


20.Taylor B.E.S., Appelboom G., Zilinyi R., Goodman A., Chapel D., LoPresti M., Connolly E.S., Jr. Role of the complement cascade in cerebral aneurysm formation, growth, and rupture. Neuroimmunol. Neuroinflammation. 2015;2:93–101.


21.Laaksamo E., Tulamo R., Liiman A., Baumann M., Friedlander R.M., Hernesniemi J., Kangasniemi M., Niemelä M., Laakso A., Frösen J. Oxidative stress is associated with cell death, wall degradation, and increased risk of rupture of the intracranial aneurysm wall. Neurosurgery. 2013;72:109–117. doi: 10.1227/NEU.0b013e3182770e8c. - DOI - PubMed


22.Brown R.D., Broderick J.P. Unruptured intracranial aneurysms: Epidemiology, natural history, management options, and familial screening. Lancet Neurol. 2014;13:393–404. doi: 10.1016/S1474-4422(14)70015-8. - DOI - PubMed


23.Syta-Krzyżanowska A., Jarocka-Karpowicz I., Kochanowicz J., Turek G., Rutkowski R., Gorbacz K., Mariak Z., Skrzydlewska E. F2-isoprostanes and F4-neuroprostanes as markers of intracranial aneurysm development. Adv. Clin. Exp. Med. 2018;27:673–680. doi: 10.17219/acem/68634. - DOI - PubMed


24.Domingues R.M., Domingues P., Melo T., Perez-Sala D., Reis A., Spickett C.M. Lipoxidation adducts with peptides and proteins: Deleterious modifications or signalling mechanisms? J. Proteomics. 2013;92:110–131. doi: 10.1016/j.jprot.2013.06.004. - DOI - PubMed


25.Barrow J.W., Turan N., Wangmo P., Roy A.K., Pradilla G. The role of inflammation and potential use of sex steroids in intracranial aneurysms and subarachnoid hemorrhage. Surg. Neurol. Int. 2018;26:150. - PMC - PubMed


26.Starke R.M., Chalouhi N., Ali M.S., Jabbour P.M., Tjoumakaris S.I., Gonzalez L.F., Rosenwasser R.H., Koch W.J., Dumont A.S. The role of oxidative stress in cerebral aneurysm formation and rupture. Curr. Neurovasc. Res. 2013;10:247–255. doi: 10.2174/15672026113109990003. - DOI - PMC - PubMed


27.Pyne-Geithman G.J., Caudell D.N., Prakash P., Clark J.F. Glutathione peroxidase and subarachnoid hemorrhage: Implications for the role of oxidative stress in cerebral vasospasm. Neurol. Res. 2009;31:195–199. doi: 10.1179/174313209X393906. - DOI - PMC - PubMed


28.La Fata G., Weber P., Mohajeri M.H. Effects of vitamin E on cognitive performance during ageing and in Alzheimer’s disease. Nutrients. 2014;6:5453–5472. doi: 10.3390/nu6125453. - DOI - PMC - PubMed


29.Shirley R., Ord E.N., Work L.M. Oxidative stress and the use of antioxidants in stroke. Antioxidants. 2014;3:472–501. doi: 10.3390/antiox3030472. - DOI - PMC - PubMed


30.Brigelius-Flohe R., Maiorino M. Glutathione peroxidases. Biochim. Biophys. Acta. 2013;1830:3289–3303. doi: 10.1016/j.bbagen.2012.11.020. - DOI - PubMed


31.Bazinet R.P., Layé S. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat. Rev. Neurosci. 2014;15:771–785. doi: 10.1038/nrn3820. - DOI - PubMed


32.Zhang M., Wang S., Mao L., Leak R.K., Shi Y., Zhang W., Hu X., Sun B., Cao G., Gao Y., et al. Omega-3 fatty acids protect the brain against ischemic injury by activating Nrf2 and upregulating heme oxygenase 1. J. Neurosci. 2014;34:1903–1915. doi: 10.1523/JNEUROSCI.4043-13.2014. - DOI - PMC - PubMed


33.Downey L.A., Simpson T., Timmer J., Nolidin K., Croft K., Wesnes K.A. Impaired verbal episodic memory in healthy older adults is marked by increased F2-Isoprostanes. Prostaglandins. Leukot. Essent. Fat. Acids. 2018;129:32–37. doi: 10.1016/j.plefa.2018.02.001. - DOI - PubMed


34.Milne G.L., Dai Q., Roberts L.J., 2nd The isoprostanes-25 years later. Biochim. Biophys. Acta. 2015;1851:433–445. doi: 10.1016/j.bbalip.2014.10.007. - DOI - PMC - PubMed


35.Corcoran T.B., Mas E., Barden A.E., Durand T., Galano J.M., Roberts L.J., Phillips M., Ho K.M., Mori T.A. Are isofurans and neuroprostanes increased after subarachnoid hemorrhage and traumatic brain injury? Antioxid. Redox Signal. 2011;15:2663–2667. doi: 10.1089/ars.2011.4125. - DOI - PMC - PubMed


36.Long E.K., Murphy T.C., Leiphon L.J., Watt J., Morrow J.D., Milne G.L., Howard J.R., Picklo M.J. Trans-4-hydroxy-2-hexenal is a neurotoxic product of docosahexaenoic (22:6; n-3) acid oxidation. J. Neurochem. 2008;105:714–724. doi: 10.1111/j.1471-4159.2007.05175.x. - DOI - PubMed


37.Miller E., Morel A., Saso L., Saluk J. Isoprostanes and neuroprostanes as biomarkers of oxidative stress in neurodegenerative diseases. Oxid. Med. Cell Longev. 2014;2014:572491. doi: 10.1155/2014/572491. - DOI - PMC - PubMed


38.Kelle J.N., Mark R.J., Bruce A.J., Blanc E., Rothstein J.D., Uchida K., Waeg G., Mattson M.P. 4-hydroxynonenal, an aldehydic product of membrane lipid peroxidation, impairs glutamate transport and mitochondrial function in synaptosomes. Neuroscience. 1997;80:685–696. doi: 10.1016/S0306-4522(97)00065-1. - DOI - PubMed


39.Guzik B., Sagan A., Ludew D., Mrowiecki W., Chwała M., Bujak-Gizycka B., Filip G., Grudzien G., Kapelak B., Zmudka K., et al. Mechanisms of oxidative stress in human aortic aneurysms--association with clinical risk factors for atherosclerosis and disease severity. Int. J. Cardiol. 2013;168:2389–2396. doi: 10.1016/j.ijcard.2013.01.278. - DOI - PMC - PubMed


40.Otnes S., Fogh-Andersen N., Rømsing J., Thomsen H.S. Analytical Interference by Contrast Agents in Biochemical Assays. Contrast Media Mol. Imaging. 2017;2017:1323802. doi: 10.1155/2017/1323802. - DOI - PMC - PubMed


41.Lippi G., Daves M., Mattiuzzi C. Interference of medical contrast media on laboratory testing. Biochem. Med. (Zagreb). 2014;24:80–88. doi: 10.11613/BM.2014.010. - DOI - PMC - PubMed


42.Kaynar M.Y., Tanriverdi T., Kemerdere R., Atukeren P., Gumustas K. Cerebrospinal fluid superoxide dismutase and serum malondialdehyde levels in patients with aneurysmal subarachnoid hemorrhage: Preliminary results. Neurol. Res. 2005;27:562–567. doi: 10.1179/016164105X17288. - DOI - PubMed


43.Łuczaj W., Gęgotek A., Skrzydlewska E. Antioxidants and HNE in redox homeostasis. Free Radic. Biol. Med. 2017;111:87–101. doi: 10.1016/j.freeradbiomed.2016.11.033. - DOI - PubMed


44.Moniuszko-Malinowska A., Łuczaj W., Jarocka-Karpowicz I., Pancewicz S., Zajkowska J., Andrisic L., Zarkovic N., Skrzydlewska E. Lipid peroxidation in the pathogenesis of neuroborreliosis. Free Radic. Biol. Med. 2016;96:255–263. doi: 10.1016/j.freeradbiomed.2016.04.032. - DOI - PubMed


45.D’Souza S. Aneurysmal Subarachnoid Hemorrhage. J. Neurosurg. Anesthesiol. 2015;27:222–240. doi: 10.1097/ANA.0000000000000130. - DOI - PMC - PubMed


46.Gostner J.M., Becker K., Ueberall F., Fuchs D. The good and bad of antioxidant foods: An immunological perspective. Food Chem. Toxicol. 2015;80:72–79. doi: 10.1016/j.fct.2015.02.012. - DOI - PubMed


47.Munakata A., Ohkuma H., Nakano T., Shimamura N., Asano K., Naraoka M. Effect of a free radical scavenger, edaravone, in the treatment of patients with aneurysmal subarachnoid hemorrhage. Neurosurgery. 2009;64:423–429. doi: 10.1227/01.NEU.0000338067.83059.EB. - DOI - PubMed


48.Teasdale G.M., Drake C.G., Hunt W., Kassell N., Sano K., Pertuiset B., de Villiers J.C. A universal subarachnoid haemorrhage scale: Report of a committee of the Word Federation of Neurosurgical Societies. J. Neurol. Neurosurg. Psychiatry. 1988;51:1457. doi: 10.1136/jnnp.51.11.1457. - DOI - PMC - PubMed


49.Fisher C.M., Kistler J.P., Davis J.M. Relation of cerebral vasospasm to subarachnoid hemorrhage visualized by computerized tomographic scanning. Neurosurgery. 1980;6:1–9. doi: 10.1227/00006123-198001000-00001. - DOI - PubMed


50.Naraoka M., Matsuda N., Shimamura N., Asano K., Ohkuma H. The role of arterioles and the microcirculation in the development of vasospasm after aneurysmal SAH. Biomed. Res. Int. 2014;2014:253746. doi: 10.1155/2014/253746. - DOI - PMC - PubMed


51.Gęgotek A., Biernacki M., Ambrożewicz E., Surażyński A., Wroński A., Skrzydlewska E. The cross-talk between electrophiles, antioxidant defence and the endocannabinoid system in fibroblasts and keratinocytes after UVA and UVB irradiation. J. Dermatol. Sci. 2016;81:107–117. doi: 10.1016/j.jdermsci.2015.11.005. - DOI - PubMed


52.Gęgotek A., Rybałtowska-Kawałko P., Skrzydlewska E. Rutin as a mediator of lipid metabolism and cellular signaling pathways interactions in fibroblasts altered by UVA and UVB radiation. Oxid. Med. Cell Longev. 2017;2017:4721352. doi: 10.1155/2017/4721352. - DOI - PMC - PubMed


53.Ivanović D., Popović A., Radulović D., Medenica M. Reversed-phase ion-pair HPLC determination of some water-soluble vitamins in pharmaceuticals. J. Pharm. Biomed. Anal. 1999;18:999–1004. doi: 10.1016/S0731-7085(98)00109-5. - DOI - PubMed


54.Maeso N., Garcıa-Martınez D., Ruperez F.J., Cifuentes A., Barbas C. Capillary electrophoresis of glutathione to monitor oxidative stress and response to antioxidant treatments in an animal model. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2005;822:61–69. doi: 10.1016/j.jchromb.2005.05.015. - DOI - PubMed


55.Luo X.P., Yazdanpanah M., Bhooi N., Lehotay D.C. Determination of aldehydes and other lipid peroxidation products in biological samples by gas chromatography-mass spectrometry. Ana.L Biochem. 1995;228:294–298. doi: 10.1006/abio.1995.1353. - DOI - PubMed


56.Coolen S.A., van Buuren B., Duchateau G., Upritchard J., Verhagen H. Kinetics of biomarkers: Biological and technical validity of isoprostanes in plasma. Amino Acids. 2005;29:429–436. doi: 10.1007/s00726-005-0229-2. - DOI - PubMed


57.Fam S.S., Murphey L.J., Terry E.S., Zackert W.E., Chen Y., Gao L., Pandalai S., Milne G.L., Roberts L.J., Porter N.A., et al. Formation of highly reactive A-ring and J-ring isoprostane-like compounds (A4/J4-neuroprostanes) in vivo from docosahexaenoic acid. J. Biol. Chem. 2002;277:36076–36084. doi: 10.1074/jbc.M205638200. - DOI - PubMed


Fuente: https://pubmed.ncbi.nlm.nih.gov/32326289/


Estudios ADICIONALES:

https://pubmed.ncbi.nlm.nih.gov/?term=glutathione+BRAIN+ANEURYSM+




90 views